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Background 

 Challenge in pipeline damage diagnosis/prognosis and risk management 

 Fast and automated identification, classification, and quantification of 
various types of damage 

 Uncertainty quantification and reduction for accurate analysis and 
decision-making 

Project objectives: 
 Develop an automatic damage precursor identification methodology 

using Bayesian/maximum entropy network 

 Develop a reliability-based maintenance scheduling optimization 
framework for plastic pipeline systems 
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Structured light-based imaging analysis 

Schematic illustration of imaging analysis with structure light scanning a) raw image with inner wall damage; b) lighting ring profile at the damage 

site;  c) structure light image assisted feature identification; (raw image obtained from http://www.swri.org/3pubs/ttoday/fall02/smartpig.htm) 

 Inner pipe imaging using structured light and 3D reconstruction (MSU) 

 Automatic damage identification, risk assessment, and risk mitigation (ASU) 
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Prototype III: Multi-color multi-ring 
ESLiST 
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 Uniquely coded colored rings are 

produced by projecting a strong 

white light into a transparency paper 

slides  that is colored with ring 

patterns. 

 A group of convex and concave 

lenses are used to collimate the light 

beam and focus it on pipe inner wall. 

 



Results: Two-color two-ring 
ESLiST  
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Two separated rings with different colors and 
diameters are used to demonstrate the ability of 
the ESLiST 

Projection on flat surface Projection inside pipe 

Projected pattern 

Inner-wall cylindrical 
surface 

• Sample 162012-004 
- 2″ IPS DUPONT 
ALDYL-A PE2306, 
~38″ long, contains 
a squeeze-off point 
and a tee fitting 



Results: Two-color two-ring 
ESLiST  
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Damage 

No 
Damage 

No 
Damage 



Imaging processing for denoising 

Gaussian de-noise 

Gaussian de-noise 
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Machine learning and classification 

 Different damage images to train the classifier  

 

 

 

 

 
 Pros: No information loss and the accuracy increases 

 Cons: Large number of nodes and training needs longer time 

 

Train 

…
 

…
 …
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Full imaging training and 
classification - 3 

 Naïve Bayes network with image input 

 High accuracy of damage detection 

 Near real-time computation 
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Diagnostics, prognostics, and risk 
management 

 Why we need this? 

 How to use this for 
decision making? 

 What is the return of 
investment? 

 What are the 
benefits for 
operators and 
regulators? 



Reliability-Based Maintenance Optimization 
(RBMO) for risk mitigation 
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RBMO formulation - 1 

 Terminology 

 Q groups of pipes  

 S deterioration stage (depending on a classification of 
damage level, e.g., crack length) 

 

 

 

 D(S,1) condition vector (percentage in each stage) 

condition 
states Excellent Very good Good fair poor very poor 

crack size  ≤ 1mm 
1mm ~ 
3mm  

3mm ~ 
5mm  

5mm ~ 
8mm  

8mm ~ 
15mm  ≥ 15mm 
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RBMO formulation - 2 

 Terminology: 

 Mm(S,S) maintenance transition matrix for method m 
(do nothing, repair, replace) 

 P(S,S) degradation matrix (related to specific physical 
mechanisms, e.g., fatigue or slow crack growth) 

 X(M,S) maintenance decision matrix 

 C(M,S) cost matrix  
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RBMO formulation - 3 

 Pipe condition estimation 

D(1×S)∙×Xm(1×S) gives a (1×S) matrix, 
meaning the percentage of samples in each 
condition that will have maintenance m 

The product of D×Xm, (1×S), times Mm(S×S) 
gives another (1×S) matrix, meaning the condition 
vector for those that have maintenance m done. 

The condition after maintenance, (1×S), 
times the degradation matrix gives the new 
predicted condition vector (1×S) for the 
group that has maintenance m done after ∆t. 

The sum over m gives the overall condition 
vector (1×S). 
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RBMO formulation - 4 

 The calculation for maintenance cost 

D(1×S)∙×Xm(1×S) gives a (1×S) matrix, 
meaning the percentage of samples in each 
condition that will have maintenance m 

Q times the product of D×Xm, (1×S), gives 
a quantity vector (1×S). Each value means 
the quantity of samples that will do 
maintenance m. 

The quantity vector (1×S) times the cost vector (1×S) gives a scaler 
meaning the total cost for doing maintenance m according to the decision X.    
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RBMO formulation - 5 

 Maximum condition status with constrained 
budget  

   Maximize total condition :  

   Constraint:  

 

 Minimize budget with constrained condition 
threshold 

   Minimize:  

   Constraint:  

( ,:)new m
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Demonstration example - 1 

 Fatigue crack growth rate-based life prediction 
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(1) 
 The material fatigue crack growth curve can be expressed as 

(2) 
 

 Fatigue life N can be obtained as: 
 

(3) 
 
 

a: crack length; Y: geometry correction factor: N: fatigue life;   
ai: initial crack length: ac: critical crack length 
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Xiang Y, Lu Z, Liu Y. Crack growth-based fatigue life prediction using an equivalent initial flaw model. 
Part I: Uniaxial loading. International Journal of Fatigue,2010;32(2):341-349. 
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Demonstration example - 2 

 S=6 (number of condition states, 6 is excellent, 5 is very 
good,4 good,…) 

 Q=[6] (total quantity of pipes A and B) 

 M=3 (do nothing; repair; replacement) 

 C= 
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000000_
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treplacemen

repair

nothingdo

tateconditions
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     P (        do nothing;        repair I;       repair II) 

 

 

 

 

 

 
 The budget in each mission= 

 [10000 8000 9000 12000 10000 8000 9000 8000 8000 9000 ]; 

 The total budget = $65000 

 The pipes in very poor condition is less than 5% after each mission 

Demonstration example - 3 
1P 2P 3P
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 Maintenance plan with different damage rates 
(case I higher rate and case II lower rate) 
 

 

 

 

 

 

Demonstration example - 4 
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Demonstration example - 5 
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 Above discussion only considers the 
maintenance cost 

 Consequence cost for distribution 
pipelines, what happens if failure 
happens? 

 Mapping with the geometric 
importance areas (hospital, public 
building, residential building, etc.) 

 Weighted optimization problem 

High consequence - 
larger weight 

Moderate consequence - 
medium weight 



Demonstration example - 6 

Monte Carlo Simulation for 
slow crack growth 

0.7127 0.2856 0.0018 2.808e-05 2.8871e-06

0 0.3296 0.4950 0.1473 0.0280

0 0 0.0457 0.3525 0.6018

0 0 0 0.0024 0.9976

0 0 0 0 1

P

 
 
 
 
 
 
  

Verification and validation for 
remaining life prediction 

Risk assessment and 
classification 

 Integrated anomaly detection, rate process modeling, 
probabilistic methods, and optimization algorithms  



Demonstration example - 7 

 Example with consequence weight: 

 G=3;  ~~~ 3 groups of pipe 

 Q=[100 100 100];  ~~ Number of samples in each group 

 Dgt=[0.1 0.2 0.5 0.15 0.05; 

           0.1 0.2 0.5 0.15 0.05; 

           0.1 0.2 0.5 0.15 0.05];  ~~~ initial condition 

 weight=[10 5 1]; 

 TTC=$500000 ~~~ total cost 

 Optimization is done using the generic algorithm 

 

 

 



Consider weighted group 

 Results: 

 New condition: 

 

 Cost for each group: 

 

0.6994 0.28506 0.0090 0.0032 0.0035

0.6883 0.2826 0.0123 0.0054 0.0113

0.6614 0.2742 0.0172 0.0178 0.0293

newD
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 These examples are demonstration purpose only and do not 
represent the practical scenarios  !!!  

 Need experts’ opinions and operational information to improve 
the pure academic research  !!! 

 



Conclusions 

 Fast in-line imaging tools for high-resolution 
anomaly detection 

 Automatic and near real-time damage 
classification and risk assessment 

 Integrated diagnostics and prognostics for 
decision making and risk mitigation 

 Need help from industry to revise, improve 
and apply this methodology to practice 
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